\square Code No. :14416 N/O

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (ECE: CBCS) IV-Semester Main \& Backlog Examinations, May-2019

Time: $\mathbf{3}$ hours

Pulse, Digital and Switching Circuits

Note: Answer ALL questions in Part Max. Marks: 60

Q. No.	Stem of the question	M	L	CO	PO
	Part-A (10 $\times 2=20$ Marks)				
1.	List any two applications of clippers and clampers.	2	3	2	1
2.	Define an attenuator. What is the need of compensating an attenuator?	2	1	1	1
3.	A Schmitt trigger circuit is designed with UTP and LTP as 2 V and 1 V respectively. Draw the output waveform of Schmitt trigger circuit for input of $3 \sin (\omega t)$.	2	3	3	2
4.	Define transmission error of a sweep signal and give its expression.	2	2	3	1
5.	Prove the following identity: $X Y+X^{\prime} Y^{\prime}+Y Z=X Y+X^{\prime} Y^{\prime}+X^{\prime} Z$	2	3	4	2
6.	Distinguish between prime implicant and an essential prime implicant?	2	4	4	1
7.	Illustrate static-0 hazard with an example.	2	2	4	1
8.	Explain the Race around condition. How can it be avoided?	2	2	4	1
9.	Draw the state diagram of T flip-flop	2	3	4	3
10.	What is One hot encoding and give its importance.	2	2	5	1
	Part-B ($5 \times 8=40 \mathrm{Marks}$)				
11. a)	Derive the expression for percentage tilt of RC high pass circuit for a square wave input.	4	2	1	2
b)	Design a diode clamper to restore the positive peaks of 1 KHz input signal to a voltage level of 5 V . Assume $\mathrm{R}_{\mathrm{f}}=200 \Omega, \mathrm{R}_{\mathrm{r}}=500 \mathrm{~K} \Omega$ and the voltage drop across the diode as 0.7 V .	4	4	2	3
12. a)	Design a collector coupled monostable multivibrator for a pulse width of 1 ms .Assume all saturation voltages of transistor as zero, $\mathrm{V}_{\mathrm{CC}}=-\mathrm{V}_{\mathrm{BB}}=12 \mathrm{~V}$ $, \mathrm{V}_{\mathrm{BE}(\text { cutoff) })}=-2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}(\text { sat })}=10 \mathrm{~mA}, \mathrm{~h}_{\mathrm{FE}}=40$ and $\mathrm{I}_{\mathrm{B}(\text { sat })}=1.5 \times \mathrm{I}_{\mathrm{B}(\text { min. })}$.	4	4	3	3
b)	Explain the working of Sweep Circuit using UJT with the help of circuit diagram.	4	1	3	1
13. a)	Implement the two input Ex-OR operation using only two input NAND gates without using complemented variables.	3	2	4	2
b)	Simplify the following Boolean function by using Quine-McCluskey method $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(0,2,3,6,7,8,10,12,13)$	5	2	4	2

14. a) Design a code converter, which can convert a 4-bit BCD into a 4-bit Excess3 code.
b) Draw the circuit diagram of a Master-Slave J-K flipflop and explain its need and operation with the help of truth-table.
15. a) Construct a four-bit Johnson counter and explain its operation.
b) Design a sequence detector circuit, which detects three or more consecutive 1 's in a string of bits coming through an input line.
i) Find the state diagram
ii) Determine the type of the circuit (Moore or Mealy model) .
16. a) Describe the operation of negative peak clipper with and without reference voltage.
b) Design a collector coupled Astable multivibrator for a duty cycle of 40% and output frequency of 1.5 KHz . Assume all saturation voltages of transistor as zero, $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~h}_{\mathrm{FE}}=40, \mathrm{I}_{\mathrm{C}(\text { sat })}=5 \mathrm{~mA}$ and $\mathrm{I}_{\mathrm{B}(\text { sat })}=1.5 \times \mathrm{I}_{\mathrm{B}(\mathrm{min})}$.
17. Answer any two of the following:
a) Expand the following expression into canonical SOP and canonical POS forms: $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\left(\mathrm{A}+\mathrm{D}^{\prime}\right)\left(\mathrm{A}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{C}\right)$
b) Realize the following Boolean function, $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$ $=\sum \mathrm{m}(1,2,4,7,9,10,12,14,15)$ using 8:1 Multiplexor.
c) Describe the operation of Parallel-in Serial-out shift register in detail.
$\begin{array}{llll}4 & 2 & 4 & 1\end{array}$
$\begin{array}{llll}4 & 2 & 4 & 1\end{array}$
$\begin{array}{llll}4 & 5 & 5 & 4\end{array}$
$\begin{array}{llll}4 & 2 & 2\end{array}$

33
$4 \quad 4$
$4 \quad 2 \quad 4 \quad 2$
$4 \quad 3 \quad 4 \quad 3$
$4 \quad 2 \quad 4 \quad 2$

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	58
2	Knowledge on application and analysis (Level-3 \& 4)	37
3	*Critical thinking and ability to design (Level-5 \& 6) (*wherever applicable)	5

